在解排列组合题目的时候,需要考大家掌握一个分类分步的思想。也就说先分类再分步是主要思路。分类往往根据有限制的元素来进行,考生在练习题时用这样的思路去思考,相信能够很快掌握。
一、分类分步的解题原理
何为分类分步,简单来说,我要从长沙去上海,完成这样一件事情三类方法:一是坐火车过去,有3趟不同的火车;二是坐汽车过去,有2趟不同的汽车;三是坐飞机过去,有4趟不同的航班,那么我从长沙到上海就一共有3+2+4=9种不同的方法。三类方法每一类都能单独完成从长沙到上海这件事情,所以把每一类的方法数相加,这是分类相加的原理。如果我需要从长沙先到武汉,然后到上海,假设从长沙到武汉有4种方法,从武汉到上海有3种方法,那么总方法数就有4×3=12种。这是分步相乘的原理。其特点是每一步都不能缺少。
二、真题演练
分类分步是相辅相成的,做题的时候一般是先考虑分类再考虑分步。比如说这样一道题:
【例1】由1-9组成没有重复数字的三位数共有多少个?
A.432 B.504 C.639 D. 720
解析:三维数可以分成个、十、百三步去完成,首先完成个位,可以放任意的数字,一共有9种方法;然后完成十位,因为不能和个位一样,所以去掉个位之后还剩下8个数字,共有8种方法;最后填百位,不能和十位以及个位相同,一共有7种方法。根据分步相乘的原理,总方法数为9×8×7=504种。选择B。