赋值法在很多题型中都有所应用,今天我们就来聊一聊赋值法如何更好的运用在经济利润问题中。
首先大家先来思考为何赋值法可以用在此类问题中?这就要从赋值法本身入手,公式能够写成型如“A=BC”形式的,即可使用赋值法。那在经济利润问题中的众多公式,有哪些满足呢?
总利润=单个利润销量/总成本=单个成本数量/总收入=售价销量
利润=利润率成本
先来说说赋值法出现频率最高的第一个公式,在此公式中使用赋值法的方法又同,那么不同的题目应该如何赋值呢?来给大家划重点了!!
如果总量不变,即赋值总量,进而求出B或者C。下面我们来看一道具体的例题。
【例1】某矿业产品公司支付了一批货款,一半用于购进每吨400元的A型石英
矿,另一半用于购进每吨600元的B型石英矿,则A、B两种石英矿的平均价格是每吨多少元?
A.480
B.490
C.500
D.510
【答案】A
【解析】第一步,本题经济利润问题,用赋值法解题。
第二步,赋值总货款为2400元,则用于购买两种石英矿的钱数均为2400÷2=1200(元),则可购买A型石英矿的数量为1200÷400=3(吨);同理可购买B型石英矿的数量为1200÷600=2(吨)。
第三步,A、B两种石英矿的平均价格为2400÷(3+2)=480(元)。
因此,选择A选项。
如果总量变化,赋值B或者C中变化的,给出了变化的比例关系的量,进而求出总量。我们再来看一道典型的简单例题。
【例2】某楼盘的地下停车位,第一次开盘时平均价格为15万元/个;第二次开盘时,车位的销售量增加了一倍、销售额增加了60%。那么,第二次开盘的车位平均价格为:
【答案】C
【解析】第一步,本题考查经济利润问题,用赋值法解题。
第二步,销售额=平均价格×销售量,已知第一次开盘平均价格为15万元/个,赋销售量为1,则销售额为15万。第二次开盘时,销售量增加了一倍,即为2,销售额增加了60%,得销售额为15×(1+60%)=24(万元),故第二次开盘平均价格为24÷2=12(万元/个)。
因此,选择C选项。
如果A、B、C三个量都是未知的,其中有两个量变化,给出了变化的比例关系,那么就同时赋值这两个量,一起来看一看这种题目。
【例3】2016年某电子产品定价为n元/台,2017年由于技术升级成本降低,定价降低10%。每台产品利润提升10%,2017年全年销售这种产品的总利润较2016年增加了21%,2017年的销量比2016年:
A.提升了不到20%
B.提升了20%或以上
C.降低了不到20%
D.降低了20%或以上
【答案】A
【解析】第一步,本题考查经济利润问题,用赋值法解题。
第二步,赋值2016年利润为10,销量为10。根据“每台产品利润提升10%”,可得2017年每台产品利润为10×(1+10%)=11。根据2017年总利润较2016年增加了21%,2016年总利润=10×10=100,则2017年总利润=100×(1+21%)=121,根据总利润=单利润×销量,可得2017年销量=121÷11=11,则2017年销量较2016年提升了。
因此,选择A选项。