前面我们已经初步领略了整除秒杀的魅力。另外,公务员考试的数学运算中还有一类题目涉及到余数,需要用余数的性质来解决。我们将继续为备战2013年上海公务员考试的考生介绍数学运中“余数秒杀”的秘笈。
【例1】1998年,甲的年龄是乙的年龄的4倍。2002年,甲的年龄是乙的年龄的3倍。问甲、乙二人2000年的年龄分别是多少岁?
A.34岁,12岁 B.32岁,8岁 C.36岁,12岁 D.34岁,10岁
常规解法:快速读题,正确找出等量关系。不妨设甲、乙在2000年的年龄分别是x、y岁由题意可列方程:
x-2=4×(y-2)
x+2=3×(y+2)
易推出x=34,y=10,因此选D。
秒杀思路:我们可以从供选答案入手。甲在2000年的年龄减去2(即1998年的年龄)应被4整除,由此排除B、C;在选项A、D中考虑乙的年龄,A中12-2=10,10的4倍是40,A不符合,因此选D。
【例2】2006年国考真题
一个三位数除以9余7,除以5余2,除以4余3,这样的三位数共有( )。
A.5个 B.6个 C.7个 D.8个
秒杀思路:这个数除以5余2,除以4余3,根据“和同取和,公倍数做周期”,可知该数除以20余7。又由于该数除以9余7,20和9的最小公倍数是180,根据“余同取余,公倍数做周期”,该数可表示为180n+7。n可取1、2、3、4、5,对应该数取值为187、367、547、727、907。n取6时180×6+7=1087是四位数,不合题意。故该数的可能取值有5个,因此选A。
要想熟练掌握数学运算中的“余数秒杀”,需要熟练同余问题的核心口诀“余同取余,和同加和,差同减差,公倍数做周期”。我们再结合具体例子讲解一下口诀的含义。
①余同:例:“一个数除以4余1,除以5余1,除以6余1”,因为余数都是1,则取1,公倍数作周期,则表示为:60N+1。
②和同:例:“一个数除以4余3,除以5余2,除以6余1”,因为4+3=5+2=6+1=7,则取7,公倍数做周期:则表示为60N+7。
③差同:例:“一个数除以4余1,除以5余2,除以6余3”, 因为4-1=5-2=6-3=3,则取3,公倍数做周期:则表示为60N-3。
学一手教育公务员考试研究中心提醒诸位考生:只要大家能理解以上口诀并灵活运用,对于数学运算中的余数问题必能笑然面对。
某公司甲乙两个营业部共有50人,其中32人为男性,已知甲营业部的男女比例为5: 3,乙营业部的男女比例为2:1,问甲营业部有多少名女职员?( )
A. 18 B. 16 C. 12 D. 9
男的32 女的18人
20:12
12:6
比例的扩大 就可以直接算出人数
113.一种溶液,蒸发掉一定量的水后,溶液的浓度变为10%,再蒸发掉同样多的水后,溶液的浓度变为12%,第三次蒸发掉同样多的水后,溶液的浓度将变为多少?( )
A. 14% B. 17% C. 16% D. 15%
解:设溶质盐是60(10,12最小公倍数),所以第一次蒸发后溶液是60/0.1=600,
第二次60/0.12=500,所以每次蒸发600-500=100的水,
则第三次蒸发后浓度是60/(500-100)=0.15,选D。