行测数量关系题目一直被考生认为比较难的部分,甚至很多考生会放弃数量关系题目,其实数量关系题目也没有考生所认为的这么难。只要考生在备考过程中能够熟练掌握一些考点的出题规律及做题方法,部分数量关系题目还是能够又快又准地解出来的。而多者合作类工程问题就是出题规律容易掌握、做题方法可以学会、在考场上能够在较短的时间内解出的题目,并且多者合作类工程问题也几乎是每年的题目。
工程问题主要是研究工作总量、工作效率、工作时间三者之间关系的题目,其基本公式为:工作总量=工作效率×工作时间。多者合作类工程问题是指有多个工作主体合作完成某项工程任务的题目。多者合作类工程问题主要解题方法为特值法,考生只要掌握了特值法的应用环境及设特值的技巧,这类题目即可以迎刃而解。我们将根据两个例题来掌握特值法在多者合作类工程问题中的应用。
例1要折叠一批纸飞机,若甲单独折叠要半个小时完成,乙单独折叠需要45分钟完成。若两人一起折,需要多少分钟完成?
A.10 B.15 C.16 D.18
【解析】此题题干中工作效率及工作总量均未知,只知甲、乙两人单独完成工作任务所用时间,则可将工作总量设成甲、乙两人单独完成工作任务所用时间的最小公倍数,即工作总量为30和45的最小公倍数90。工作总量设定后可求甲的工作效率
则甲乙二人合作所用时间为
也就是甲乙二人合作所需时间为18分钟。故此题应选D。
小结1:已知多个工作主体完工时间,将工作总量设为多个完工时间的最小公倍数。