上海职业能力倾向备考

首页 > 上海事业单位考试 > 备考技巧 > 职业能力倾向备考

【数理能力】2022上海事业单位考试行测数量关系:巧解直角三角形

上海华图教育 | 2022-04-23 10:20

收藏

考试中几何问题考查的频率越来越高,其中解直角三角形则是重中之重。直角三角形作为大家从小就开始接触的知识点,想必对于它是十分亲切熟悉的,因而也成为我们数量关系做题当中的优先选择。那么我们要怎么依据直角三角形的相关知识进行解题呢?上海华图教育带大家一块儿来看一下吧!

想要能够求解出直角三角形的相关题目,两个相关的知识点是大家需要掌握的。

一、勾股定理:勾股定理指的是直角三角形中两直角边的平方和等于斜边的平方,常见的勾股数有3、4、5;6、8、10;5、12、13;

二、把握含30°和45°角的两个特殊直角三角形的比例关系:含30°的直角三角形中,30°角对应的直角边的长度是斜边的一半,各边之比为

;含45°的直角三角形中,各边之比为

;如下图所示:

学习了直角三角形的相关知识点,以后再碰到几何问题,我们就可以借助题目条件构造直角三角形,利用勾股定理以及含30°和45°角的直角三角形的各边比例关系来解题,接下来我们就通过两个例题来看看如何求解吧!

例题展示 例1甲地在乙地的正东方,在丙地的正南方。甲、乙之间距离为2.1千米。小张从甲地骑车直线前往丙地,回程时以相同速度直线前行乙地再直线返回甲地,回程时的路程比去程长

问:甲丙之间的距离在以下哪个范围内?

A.不到5千米 B.5-6千米 C.6-7千米 D.超过7千米

【解析】根据题意,我们可以根据“上北下南,左西右东”的原则画出甲、乙、丙之间的位置关系,如下图所示

因为甲在乙的正东,在丙的正南,正东和正南构成直角,因而甲、乙、丙三地的连线构成了直角三角形,甲乙之间距离为2.1千米,小张先从甲地到乙地,回程时是由丙→乙→甲,根据回程时的路程比去程长

我们可以得到,

设甲丙之间的距离为3x,那么丙乙+甲乙=4x,丙乙=4x-2.1,根据直角三角形中勾股定理可得

超过7千米。故本题选D。

分享到

微信咨询

微信中长按识别二维码 咨询客服

全部资讯

copyright ©2006-2020 华图教育版权所有